

Motivation

- More than 10 years of QuikSCAT data are available at 90% global daily coverage provides exciting opportunity for improving the ECCO2 MITgcm.
- An improved, 'prototype' wind stress analysis product would have enormous impacts for both operations and research.
- Potential for optimizing of high resolution simulations.
- Potential contributions to the fundamental understanding of the physics and dynamics of oceanographic processes.

Objectives

- 1. Test an improved wind stress parameterization in MITgcm.
 - Run surface-relative and absolute wind integrations.
 - Compare with Large and Pond (1981) parameterization.
 - Compare all runs with QuikSCAT retrievals.
- 2. Incorporate improved parameterization into MITgcm.
- 3. Quantify model vs. data errors through comparisons of QuikSCAT-ECCO2 wind stress.
 - Requirement for assimilation.
- 4. Repeat 1/8° simulation (Hill et al. 2007) using both:
 - QuikSCAT wind stress constraints and
 - improved, sea-state-dependent (hypothetically ideal) surface wind stress parameterization.

Power Spectrum: MITgcm vs. TOPEX

Mean Surface Velocities: 1992-2002

Meridional: Absolute – Relative

Bin Value (W m-2)

 10^{-5} -200

-100

o

Comparisons to In Situ Stress

- Recent developments in sea-state dependent stress parameterizations have been adjusted to provide a better fit to in situ stress observations (Bourassa 2004, 2006):
- Created a 'prototype' QuikSCAT Level-2 wind stress retrieval product based on the Bourassa (2006) parameterization.

QuikSCAT-ECCO2 Inconsistencies

Zonal Stress RMS Difference (N m⁻²)

> 95% Data Errors Below 0.025 N m⁻²

Concluding Remarks

- An improved 1/8° simulation would raise the bar for higher resolution simulations.
- Global, gridded stress fields from ECCO2 could be provided as an open-source analysis product.
 - Potential for climate studies and short-term forecasting applications.
 - Potential for cal/val with other OGCMs.
 - Potential for cal/val with current and future scatterometer stress GMF development.
- Re-estimation of wind work upon the ocean circulation, continuing in the direction of Wunsch (1998) and von Storch et al. (2007).

